Haryana State Board HBSE 8th Class Maths Solutions Chapter 13 सीधा और प्रतिलोम समानुपात Ex 13.1 Text Exercise Questions and Answers.
Haryana Board 8th Class Maths Solutions Chapter 13 सीधा और प्रतिलोम समानुपात Ex 13.1
प्रश्न 1.
एक रेलवे स्टेशन के निकट कार पार्किंग शुल्क इस प्रकार है.
4 घंटों तक – 60 रुपए
8 घंटों तक – 100 रुपए
12 घंटों तक – 140 रुपए
24 घंटों तक – 180 रुपए
जाँच कीजिए कि क्या कार पार्किंग शुल्क पार्किंग समय के प्रत्यक्ष अनुपात में है?
हल :
हम देखते हैं कि जैसे-जैसे समय में वृद्धि हो रही है, उसी प्रकार पार्किग शुल्क में भी वृद्धि हो रही है, लेकिन इनका अनुपात का मान समान नहीं है। इसलिए, पाकिग शुल्क पारिंग समय के प्रत्यक्ष अनुपात में नहीं है।
प्रश्न 2.
एक पैंट के मूल मिभण के 8 भागों में जाल रंग के पदार्थ का 1 भाग मिताकर मिश्न सैयार किया आता है, निम्नलिखित सारणी में, मूल मिश्रण के वे मान ज्ञात कीजिए, जिनें मिलाये जाने की आवश्यका है-
लाल रंग के पदार्थ के भाग | 1 | 4 | 7 | 12 | 20 |
मूल मिश्रण के भाग | 8 | – | – | – | – |
हुल :
मान लीजिए कि, लाल रंग के पदार्थ का भाग x है, तथा मूल मिश्रण के भाग y है।
लाल रंग के पदार्थ के भाग | 1 | 4 | 7 | 12 | 20 |
मूल मिश्रण के भाग | 8 | y2 | y3 | y4 | y5 |
जैसे-जैसे लाल रंग के पदार्थ के भागों में वृद्धि होती है। अत: यह एक प्रत्यक्ष अनुपात की स्थिति है। अतः
(i) यहाँ x1 = 1
x2 = 4
y1 = 8
y2 = ?
∴ \(\frac{x_{1}}{x_{2}}=\frac{y}{y_{2}}\)
\(\frac{1}{4}=\frac{8}{y_{2}}\) अर्थात, y2 = 32 ………(i)
(ii) यहाँ x2 = 4
x3 = 7
y2 = 32
y3 = ?
∴ \(\frac{x_{2}}{x_{3}}=\frac{y_{2}}{y_{3}}\)
= \(\frac{4}{7}=\frac{32}{y_{3}}\)
4y3 = 32 × 7
y3 = \(\frac{32 \times 7}{4}\)
y3 = 56 …………..(ii)
(iii) यहाँ x3 = 7
x4 = 12
y3 = 56
y4 = ?
∴ \(\frac{x_{3}}{x_{4}}=\frac{y_{3}}{y_{4}}\)
= \(\frac{7}{12}=\frac{56}{y_{4}}\)
7y4 = 56 × 121
y4 = \(\frac{56 \times 12}{7}\) = 8 × 12
y4 = 96 ……………(iii)
(iv) यहाँ x4 = 12
x5 = 20
y4 = 96
y5 = ?
∴ \(\frac{x_{4}}{x_{5}}=\frac{y_{4}}{y_{5}}\)
= \(\frac{12}{20}=\frac{96}{y_{5}}\)
12y5 = 96 × 20
y5 = \(\frac{96 \times 20}{12}\)
y5 = 160 ……………(iv)
अतः
लाल रंग के पदार्थ के भाग | 1 | 4 | 7 | 12 | 20 |
मूल मिश्रण के भाग | 8 | 32 | 56 | 96 | 160 |
प्रश्न 3.
प्रश्न 2 में यदि लाल रंग के पदार्थ के 1 भाग के लिए 75 ml मूल मिश्रण की आवश्यकता है, तो मूल मिश्रण के 1800 ml में हमें कितना लाल रंग का मिश्रण मिलाना चाहिए?
हल :
माना 1800ml में लाल रंग के पदार्थ में भाग की आवश्यकता होगी । तब,
लाल रंग का पदार्थ | 1 | x |
मूल मिश्रण (ml में) | 75 | 1800 |
लाल रंग के पदार्थ के मान में जितनी वृद्धि होगी, उसके मूल मिश्रण में भी उतनी ही वृद्धि होगी । अर्थात्
∴ \(\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}\)
\(\frac{1}{x}=\frac{75}{1800}\)
x = \(\frac{1800}{75}\)
∴ x = 24
अत: मूल मिश्रण के 1800 ml में हमें 24 भाग लाल रंग के पदार्थ की आवश्यकता होगी।
प्रश्न 4.
किसी सॉफ्ट ड्रिंक फैक्ट्री में एक मशीन 840 बोतलें 6 घंटे में भरती हैं। वह मशीन 5 घंटे में कितनी बोतलें भरेगी।
हल :
माना, वह मशीन 5 घंटे में x बोतलें भरेगी।
बोतलें | 840 | x |
समय | 6 | 5 |
हम देखते हैं कि जैसे बोतलों की संख्या घटेगी, उसी प्रकार समय भी घटेगा।
अर्थात्,
∴ \(\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}\)
\(\frac{840}{x}=\frac{6}{5}\)
6x = 840 × 5
∴ x = \(\frac{840 \times 5}{6}\) = 140 × 5
∴ x = 700
अत: 5 घंटे में 700 बोतलें भरी जायेंगी ।
प्रश्न 5.
एक बैक्टीरिया या जीवाणु के फोटोग्राफ को 50,000 गुना आवर्धित करने पर उसकी लम्बाई 5 cm हो जाती है । इस बैक्टीरिया की लम्बाई क्या है ? यदि फोटोग्राफ को केवल 20,000 गुना आवर्षित किया जाये, तो उसकी आवर्धित लम्बाई क्या होगी?
हल :
फोटोग्राफ | 20,000 | 50,000 |
लम्बाई (m) | x | 5 |
(i) जैसे-जैसे जीवाणु के फोटोग्राफ को आवर्धित करना पड़ेगा, उसी प्रकार उसकी लम्बाई में भी वृद्धि होगी।
अर्थात,
∴ \(\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}\)
\(\frac{20000}{50000}=\frac{x}{5}\)
50000x = 20000 × 5
∴ x = \(\frac{20000 \times 5}{50000}\)
∴ x = 2 cm.
(ii) बैक्टीरिया की वास्तविक लम्बाई = \(\frac{x}{50000}\)
= \(\frac{1}{10000}\) = 10-4 cm.
प्रश्न 6.
एक जहाज के मॉडल में, उसका मस्तूल 9 cm ऊँचा है, जबकि वास्तविक जहाज का मस्तूल 12 m ऊंचा है। यदि जहाज की लम्बाई 28 m है तो उसके मॉडल की लम्बाई कितनी है ?
हल :
माना जहाज के मॉडल की लम्बाई y cm है।
ऊँचाई | 9 | 12 |
लम्बाई | y | 28 |
∴ \(\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}\)
\(\frac{9}{y}=\frac{12}{28}\)
28 × 9 = 12y
∴ y = \(\frac{28 \times 9}{12}\)
∴ y = 12 cm.
अत: मॉडल की लम्बाई 21 cm होगी।
प्रश्न 7.
मान लीजिए 2 kg. चीनी में 9 × 106 क्रिस्टल हैं। निम्नलिखित kg. चीनी में कितने क्रिस्टल होंगे?
(i) 5 kg
(ii) 1.2 kg
हल :
(i) माना, 5kg चीनी में y क्रिस्टल हैं।
चीनी (kg.) | 2 | 5 |
क्रिस्टल | 9×106 | y |
∴ \(\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}\)
\(\frac{2}{9 × {10^{6}}=\frac{5}{y}\)
\(\frac{9}{y}=\frac{12}{28}\)
2y = 5 × 9 × 106
y = \(\frac{5 \times 9 \times 10^{6}}{2}\)
∴ y = \(\frac{45}{2}\) × 106
⇒ 22.5 × 106
⇒ 2.25 x 107
अत: 5 kg. चीनी में 2.25 ×106 क्रिस्टल है।
(ii) माना, 1.2 kg. में x क्रिस्टल हैं।
चीनी (kg.) | 2 | 1.2 |
क्रिस्टल | 9×106 | x |
∴ \(\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}\)
\(\frac{2}{9 × {10^{6}}=\frac{1.2}{x}\)
2x = 1.2 × 9 × 106
x = \(\frac{1.2 \times 9 \times 10^{6}}{2}\)
∴ x = 5.4 × 10106
अतः 1.2 kg चीनी में 5.4 x 10 क्रिस्टल है।
प्रश्न 8.
रश्मि के पास एक सड़क का मानचित्र है, जिसके पैमाना 1 cm की दूरी 18 km. निरूपित करती है । वह सड़क पर अपनी गाड़ी से 72 km की दूरी तय करती है। उसके द्वारा तय की गई दूरी मानचित्र में क्या होगी?
हल :
माना गाड़ी द्वारा तय की गई दूरी मानचित्र में x cm है।
दूरी (km) में | 18 | 72 |
दूरी (cm) में | 1 | x |
अर्थात् हम
∴ \(\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}\)
\(\frac{18}{1}=\frac{72}{x}\)
18x = 72 × 1
x = \(\frac{72}{18}\) = 4
अत: मानचित्र में यह दूरी 4 cm होगी।
प्रश्न 9.
एक 5 m 60 cm ऊंचे ऊर्ध्वाधर खम्भे की छाया की लम्बाई 3 m 20 cm है। उसी समय पर ज्ञात कीजिए
(i) 10 m 50 cm ऊँचे एक अन्य खम्भे की अया की लम्बाई,
(ii) उस खम्भे की ऊंचाई, जिसकी अया की लम्बाई 5 m है।
हल :
(i) माना कि 10 m 50 cm ऊँचे खम्भे की छाया की लम्बाई x m है।
खम्भे की ऊँचाई | 5m 60cm | 10m 50cm |
अया की लम्बाई | 3m 20cm | x |
अर्थात, हम \(\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}\) का उपयोग करेंगे।
\(\frac{5.60}{3.20}\) = \(\frac{10.50}{x}\)
कैंची गुणा करने पर-
5.60x = 10.50 × 3.20
x = \(\frac{10.52 \times 3.20}{5.60}\) = \(\frac{10.50 \times 3.20}{5.60 \times 100}\)
x = 6 m
अत: 10 m 50 cm ऊंचे एक खम्भे की छाया की लम्बाई 6 m होगी।
(ii) माना खम्भे की ऊँचाई x मीटर है-
खम्भे की ऊँ. | 5.60 | x |
छाया की ल. | 3.60 | 5 |
अत: जैसे-जैसे छाया की लम्बाई में वृद्धि होती है, वैसे-वैसे खम्भे की ऊँचाई में भी वृद्धि होगी।
अतः \(\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}\)
\(\frac{5.60}{3.20}\) = \(\frac{x}{5}\)
⇒ 5.60 × 5 = 3.20x
⇒ x = \(\frac{5.60 \times 5}{3.20}\) ⇒ \(\frac{560 \times 5}{320}\) = 8.75
अत: खम्भे की ऊँचाई 8 m 75 cm, होगी ।
प्रश्न 10.
माल से लदा हुआ एक टुक 25 मिनट में 14 km चलता है । यदि चाल वही रहे, तो वह 5 घंटे में कितनी दूरी तय कर पायेगा?
हल :
माना ट्रक 5 घंटे में दूरी तय करेगा ।
1 घंटा = 60 मिनट
5 घंटे = 300 मिनट
दूरी (km में) | 14 | x |
समय (मिनट में) | 25 | 300 |
अत: जैसे-जैसे समय में वृद्धि हो रही है, वैसे-वैसे दूरी में भी वृद्धि होगी।
अर्थात् –
\(\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}\)
\(\frac{14}{x}\) = \(\frac{25}{300}\)
कैंची गुणा करने पर-
25x= 300 × 14
∴ x = \(\frac{300 \times 14}{25}\)
x = 168 km
अतः वह ट्रक 5 घंटे में 168 km दूरी तय करेगा ।