Haryana State Board HBSE 7th Class Maths Solutions Chapter 3 आँकड़ो का प्रबंधन Ex 3.1 Textbook Exercise Questions and Answers.
Haryana Board 7th Class Maths Solutions Chapter 3 आँकड़ो का प्रबंधन Ex 3.1
प्रश्न 1.
अपनी कक्षा के किन्हीं दस (10) विद्यार्थियों की ऊँचाइयों का परिसर ज्ञात कीजिए।
हल :
माना कक्षा के किन्हीं दस (10) विद्यार्थियों की ऊँचाई (सेमी में)
148, 150, 146, 152, 155, 140, 160, 158, 147 और 142 है।
आरोही क्रम में व्यवस्थित करने पर
140, 142, 146, 147, 148, 150, 152, 155, 158 और 160
विद्यार्थियों की ऊँचाइयों का परिसर
= 160 – 140 = 20 सेमी।
प्रश्न 2.
कक्षा के एक मूल्यांकन में प्राप्त किए गए निम्नलिखित अंकों को एक सारणीबद्ध रूप में संगठित कीजिए :
4, 6, 7, 5, 3, 5, 4, 5, 2, 6
2, 5, 1, 9, 6, 5, 8, 4, 6, 7
(i) सबसे बड़ा अंक कौन-सा है?
(ii) सबसे छोटा अंक कौन-सा है?
(iii) इन आँकड़ों का परिसर क्या है ?
(iv) अंकगणितीय माध्य ज्ञात कीजिए।
हल :
अंकों को सारणीबद्ध रूप में लिखने पर,
(i) सबसे बड़ा अंक = 9
(ii) सबसे छोटा अंक = 1
(iii) परिसर = 9 – 1 = 8
(iv) माध्य = \(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{100}{20}\) = 5
प्रश्न 3.
प्रथम 5 पूर्ण संख्याओं का माध्य ज्ञात कीजिए।
हल :
प्रथम 5 पूर्ण संख्याएँ 0, 1, 2, 3 और 4 हैं।
माध्य = \(\frac{0+1+2+3+4}{5}=\frac{10}{2}\) = 5 उत्तर
प्रश्न 4.
एक क्रिकेट खिलाड़ी ने 8 पारियों में निम्नलिखित रन बनाए :
58, 76, 40, 35, 46, 50, 0, 100
उनका माध्य स्कोर या रन ज्ञात कीजिए।
हल:
कुल स्कोर = 58 + 76 + 40 + 35 + 46 + 50 + 0 + 100
= 405
प्रेक्षणों की संख्या – 8
माध्य = \(\frac {1}{2}\) उत्तर
प्रश्न 5.
निम्नलिखित सारणी प्रत्येक खिलाड़ी द्वारा चार खेलों में अर्जित किए गए अंकों को दर्शाती है:
खिलाड़ी | खेल 1 |
खेल 2 |
खेल 3 |
खेल 4 |
A | 14 | 16 | 10 | 10 |
B | 0 | 8 | 6 | 4 |
C | 8 | 11 | खेला नहीं | 13 |
अब निम्नलिखित प्रश्नों के उत्तर दीजिए :
(i) प्रत्येक खेल में 4 द्वारा अर्जित औसत अंक ज्ञात करने के लिए माध्य ज्ञात कीजिए।
(ii) प्रत्येक खेल में C द्वारा अर्जित माध्य अंक ज्ञात करने के लिए आप कल अंकों को 3 से भाग देंगे या 4 से? क्यों ?
(iii) B ने सभी चार खेलों में भाग लिया है। आप उसके अंकों का माध्य किस प्रकार ज्ञात करेंगे?
(iv) किसका प्रदर्शन सबसे अच्छा है?
हल :
(i) A के प्रत्येक खेल के लिए माध्य
= \(\frac{14+16+10+10}{4}=\frac{50}{4}\) = 12.5
(ii) C के प्रत्येक खेल के लिए माध्य अंक
= \(\frac{8+11+0+13}{4}=\frac{32}{4}\) = 8
हम स्थिति की तुलना कर रहे हैं। इसलिए, C का माध्य ज्ञात करने के लिए 4 से भाग देंगे।
(iii) B के प्रत्येक खेल के लिए माध्य अंक
= \(\frac{0+8+6+4}{4}=\frac{18}{4}\) = 4.5
(iv) इसलिए 12.5 > 8 > 4.5
∴ A का प्रदर्शन सबसे अच्छा है।
प्रश्न 6.
विज्ञान की एक परीक्षा में, विद्यार्थियों के एक समूह द्वारा (100 में से) प्राप्त किए गए अंक 85, 76, 90, 85, 39, 48, 56, 95, 81 और 75 हैं। ज्ञात कीजिए :
(i) विद्यार्थियों द्वारा प्राप्त सबसे अधिक अंक और सबसे कम अंक।
(ii) प्राप्त अंकों का परिसर,
(iii) समूह द्वारा प्राप्त माध्य अंक।
हल :
विद्यार्थियों के एक समूह द्वारा प्राप्त किए अंकों को आरोही क्रम में व्यवस्थित करने पर,
39, 48, 56, 75, 76, 81, 85, 85, 90 और 95
(i) सबसे अधिक अंक = 95 और सबसे कम अंक = 39
(ii) प्राप्त अंकों का परिसर = 95 – 39 = 56
(iii) माध्य अंक = \(\frac{39+48+56+75+76+81+85+85+90+95}{10}\)
= \(\frac {730}{10}\) = 73 उत्तर
प्रश्न 7.
छः क्रमागत वर्षों में एक स्कूल में विद्यार्थियों की संख्या निम्नलिखित थी:
1555, 1670, 1750, 2013, 2540, 2820
इस समय-काल में स्कूल के विद्यार्थियों की माध्य संख्या ज्ञात कीजिए।
हल :
छः क्रमागत वर्षों में विद्यार्थियों की संख्या का योग = 1555 + 1670 + 1750 + 2013 + 2540 + 2820
= 12348
माध्य = \(\frac {12348}{6}\) = 2058. उत्तर
प्रश्न 8.
एक नगर में किसी विशेष सप्ताहके 7 दिनों में हुई वर्धा (मिमी में) निम्नलिखित रूप से रिकॉर्ड की गई:
दिन | वर्षा (मिमी) |
सेमवार | 0.0 |
मंगलवार | 12.2 |
बुधवार | 2.1 |
वृहस्पतिवार | 0.0 |
शक्रवार | 20.5 |
शनिवार | 5.5 |
रविवार | 1.0 |
(i) उपरोक्त आँकड़ों से वर्षा का परिसर ज्ञात कीजिए।
(ii) इस सप्ताह की माध्य वर्षा ज्ञात कीजिए।
(iii) कितने दिन वर्षा, माध्य वर्षा से कम रही ?
हल :
(i) 7 दिनों में हुई वर्षा को आरोही क्रम में रखने पर,
0.0, 0.0, 1.0, 2.1, 5.5, 12.2, 20.5
परिसर = 20.5 – 0.0 = 20.5
(ii) 7 दिनों की वर्षा का योग = 0.0 + 0.0 + 1.0 + 2.1 +5.5 + 12.2 + 20.5 = 41.3
माध्य = \(\frac {41.3}{7}\) = 5.9 मिमी
(iii) पाँच दिन वर्षा, माध्य वर्षा से कम रही।
प्रश्न 9.
10 लड़कियों की ऊँचाइयाँ सेमी में मापी गई और निम्नलिखित परिणाम प्राप्त हुए।
135, 150, 139, 128, 151, 132, 146, 149, 143, 141
(i) सबसे लम्बी लड़की की लम्बाई क्या है?
(ii) सबसे छोटी लड़की की लम्बाई क्या है ?
(iii) इन आंकड़ों का परिसर क्या है ?
(iv) लड़कियों की माध्य ऊँचाई (लम्बाई) क्या है?
(v) कितनी लड़कियों की लम्बाई, माध्य लम्बाई से अधिक है?
हल :
ऊँचाइयों को आरोही क्रम में व्यवस्थित करने पर,
128, 132, 135, 139, 141, 143, 146, 149, 150, 151
(i) सबसे लम्बी लड़की की ऊँचाई = 151 सेमी
(ii) सबसे छोटी लड़की की ऊँचाई = 128 सेमी
(iii) परिसर = (151 – 128) सेमी = 23 सेमी
(iv) माध्य ऊँचाई = \(\frac {कुल ऊँचाइयों का योग}{लड़कियों की संख्या}\)
= \(\frac{128+132+135+139+141+143+146+149+150+151}{10}\)
= \(\frac {1414}{10}\) = 141.4 सेमी।
(v) पाँच लड़कियों की लम्बाई माध्य लम्बाई से अधिक है।